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We present a specific use of domain decomposition and decomposition in function
space combined with asymptotic analytical qualitative results to obtain, on paral-
lel computers, efficient and accurate solvers [3] for rapidly varying quasi-planar
unsteady combustion fronts in liquids. In particular, we giveeav parallel direct
solverof the unsteady incompressible Navier—Stokes equations in the stream func-
tion formulation. This solver is based on an embedding technique that allows us to
generalize our previous results from the case with periodic boundary conditions [6, 7]
to thenonperiodiccase with wall boundary conditions in a direction perpendicular to
front propagation. The solution is decomposed into a particular solution, suitable for a
Fourier method, and the general homogeneous solution, calculated from an analytic
solution with high precision, to satisfy the boundary conditions. The algorithm is im-
plemented for parallel computers and results in a very effective code. Results on the
effect of the convection onto the front propagation are provideel 1998 Academic Press

Key Wordsdomain decomposition; Fourier expansions; Chebyshev polynomials;
combustion; parallelism.

1. INTRODUCTION

Our applications to frontal polymerizatiofr®) are characterized by rapidly varying
fronts and complex nonlinear dynamics. The multiple scale phenomena under con:
ration lead to very intense computations and can be analyzed formally by asymptotic i
ods [9, 8]. In this paper, we consider the propagation of reaction fronts in liquids t

1 This work was backed by &jion Rithe Alpes.
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models FP; FP is currently being investigated as a tool to design new materials that cz
be produced by classical processes [16]. The interaction between convective instabi
similar to Rayleigh Bhard’s instability and thermal instabilities, well-known in solid phas
combustion [15, 5] plays a key role in the modelization of FP [18, 17].

The aim of this paper is to give an algorithm that works for periodic, as well as
nonperiodic boundary conditions without changing the data structure, allowing us to ex
our previous results [6] and maintaining the high accuracy required to produce reli
numerical simulations of FP. Instabilities in FP are very difficult computations to wc
out properly and extremely time consuming; we wholly use the very specific feature:
the solution that we are searching for and that corresponds to some experiments [1
design our solver methodology. In addition, the basic idea of using local Fourier basis t
from periodic to nonperiodic boundary conditions with the same data structure and a ¢
parallel efficiency might be of real interest for a more general situation [12-14, 4]. T
paper gives a nontrivial example of the application of such methodology.

The outline of the present paper is as follows: First, we introduce the governing equa
of our model of a 2D frontal polymerisation process in a liquid phase. Then in Sectiol
we recall the special use of domain decomposition and decomposition in a function sy
combined with asymptotic analytical qualitative results, to obtain, on parallel comput
efficient and accurate solvers [3] for rapidly varying quasi-planar unsteady combus
fronts in liquids with periodic boundary condition in thedirection. In Section 3 we
give anew parallel direct solveof the unsteady incompressible Navier—Stokes, bas
on an embedding technique that allows us to generalize our previous results [6] fron
periodic case to theonperiodic caseThe purpose of Section 4 is to provide an exampl
of a numerical simulation made with our method and to illustrate the effectiveness of
approach. In this paper we have chosen to consider the effect of convection on the the
instability of our combustion model. Conclusions are then given in Section 5.

1.1. Governing Equations of a FP Process in a Liquid Phase

The first step in modelization is to couple the reaction—diffusion system, well-kno
in solid combustion [15], with the Navier—Stokes equations written in the Boussinesq
proximation. For the numerical simulation, we use the stream function—vortigity )
formulation of the N-S and we consider first-order one-step chemical readiaeghe
concentration of the reactant amds the temperature. We look for special solutions of th
dimensionless system (1)—(4)

9T /0t + (0W/02)(dT /0X) — (3W/0X)(3T/02) = AT + W (1)
9C/ot + (0W/32)(dC/dX) — (W /9X)(dC/dZ) = e AC — W )
do /0t + (0W/02)(dew/0X) — (IW/0X)(dw/02) = PAw — R Pz—l @)

AV = — 4)

that are traveling combustion fronté/ represents the source term given by the Arrhenit
law,

ZT
W= ZCexp(m> (5)
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with § =q/ Ty, € a small parameter which is a scaled measure of the mass diffiite,
PrandIt numberR the Rayleigh number, arifi=q E/ Ry T,2 the Zeldovich number, witRy
the gas constanE the activation energy, argpthe adiabatic heat release, whége=T; + q
is the adiabatic temperature afdis the temperature of the cold reactant.

The boundary conditions satisfied are

T—-0 C—1 w—0 ¥v—0 asz— —oo, (6)
T—»1 C—0 w—0 ¥—-0 asz— +oo. (7

However, we solve (1)—(4) on the finite domdn=[—L, L] x [0, 27] with the boundary
conditions

Tx,-L)=0, T(x,L)=1 forx € (0, 27), (8)
Cix,-L)=1, Cx,L)y=0 forx € (0, 27), 9
oX,FL) =0, ¥X,FL)=0 forx e (0,2n7), (10)

and we take in the numerical simulatibrarge enough such that it has no influence on th
dynamics of the combustion front.

Let us note that for this system (1)—(4) the derivation of the corresponding interface m
[8] shows that in the limit of infinite activation energy the concentration exhibits a jump
the front, the temperature is continuous but it has a jump in its first-order derivative nor
to the front, and the velocity is continuous, up to the third-order derivative normal to
front. Moreover, the viscosity of the N—S model is very low, so the stream function and c
sequently the vorticity do not show a TL near the front. Therefore the main difficulty in t
computation is driven by the combustion process itself and not the computation of the f

The system (1)—(4) has one-dimensional traveling wave solutions that are stable o
stable, depending on the value of the bifurcation (and control) parani&t&tsP, €. We
use these traveling wave solutions as initial conditions for the numerical simulation
introduce local perturbations to test their stability and/or to obtain new pattern formati
of the solution. We maintain the time-dependent combustion front that propagates ir
negativez direction during the numerical simulation roughly in the vicinity of the centr:
line x = 0 by shifting in space the unknown functions. This shift is done by first computi
the Chebyshev coefficients of the unknown functions, then shifting the computational
in the z-direction: the unknown functions are interpolated at each point of the new com
tational grid, with spectral accuracy, except for new points of the physical domain wh
correspond to extrapolation. In addition, we satisfy (8)—(10) for all time. In the followir
paragraphs, we will consider two situations depending on the types of boundary condit
for the unknowns along the boundaxy= 0 andx = 27 of the domain. We recall that the
solution exhibits multiple scale phenomena in space and in time: the combustion fro
rapidly varying and the nonlinear source tevkhis close to a very sharp peak that drive:
the dynamic of the combustion reaction; the combustion front may pulse in time anc
speed exhibits relaxation oscillations. The solution and its possible bifurcations are
intractable by low order schemes.

2. PERIODIC BOUNDARY CONDITIONS

Let us first briefly recall our methodology to solve the model problem [9, 8] with t
periodic boundary conditions in thxevariable. We use Chebyshev piecewise approximatic
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[10, 11] of the solution in the direction of propagation of the chemical wawa(iable)
and Fourier expansion and/or high order finite differences in the periodic direction. Le
briefly describe the salient features of our method. A detailed description of the methoc
be found in [6].
We first consider the example of the scalar 1D equation:
au 9%
i + Fe(u), u(=1) =0, u(l) =1, (11)
with some appropriate initial condition. We suppose thakhibits atransition layer(TL)
of thickness located az = S(t) € (—1, 1). It was shown in [1, 3, 10] that an efficient and
accurate way to solve a TL is to use two subdomains with an interface located at the
and a mapping that concentrates the collocation points of the pseudo-spectral approxir
at the end of the subdomains in the layer. The solutiafi (11) restricted to one of these
subdomains exhibits a boundary layer (BL) in the neighborhods{f
Letus consider that we hanel = 2 subdomains witlN, collocation points per subdomain
and a semi-implicit Euler scheme for the integration in time:

un+1 —_u"

N DA™+ F.(u"), xeQ,i=12, (12)

where At is a constant time step, arid is the operator of differentiation. We take the
second-order derivative term implicitly because it gives the main constraint on the t
step. Since the nonlinear term is taken explicitlyt* can be found as a solution to the
linear system

Aq
Du™?t =u"+ AtF.(u"), withD = | & g, (13)

Az

DR ™

wherey is a real numberA; and A; are(N; — 1) x (N, — 1) matrices,of,ﬁ, at, ﬁt are
vectors with(N, — 1) components. The roé!, y, Et) appears from the condition of con-
tinuity of the first derivative at the interfacéy and A, correspond to the discrete operato
(I + AtD?) on each subdomain without the row acting on the interface points. The lin
system (13) can eventually be solved with two parallel processes. The domain decom
tion with two subdomains that we have presented here can be generalized to an arb
number of subdomains to solve multiple front structures [3, 1]. This domain decomp
tion is afirst level of decompositionthat is, a priori, a nonscalable parallelism becaus
of its dependence on the numbers of the layers. As the front moves we adapt the gt
the z-direction in order to put the interface of the two subdomains at the sharp positiol
the front. The location of the front is derived from asymptotic criteria and/or an a pri
estimate.

To move toward aecond level of decompositiothat uses a fine grid level of parallelism,
we shall now consider a two-dimensional case with some appropriate initial conditions,
generalizing our previous example (11):

au/dt = 9%u/ax? + 92u/9z? — F.(u), ze (—1,1), x € (0, 2n),

(14)
ux,—-1) =0, ux,)=1 xe(0,2r).
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We look for a periodic solution(z, x) in thex variable. We now assume that the TL of the
problem (14) dependseaklyon x. This hypothesis significantly simplifies the technique
of the domain decomposition method as we will see in the following. As the solutisn
not rapidly varying in the direction, we can use a regular mesh inxhairection. Our first
choice is to use a central finite-difference scheme of order ®fotthe approximation of
82/9x2, on a regular grid o, points with a stefn = 27 /(Ny — 1). The finite difference
approximation of order 6 of the terfifu/dx? is treatecexplicitly. The cost of the algorithm
is very low because the complexity of the computation is linear with respekst; tdn
addition, the time step constraint due to the explicit treatment of the second order deriv
is, in practice, of the same order as the time step restriction due to the explicit treatme
the nonlinear source terms. The numerical algorithm can exploit the fine grid decompos
due to the explicit dependencewhecause the computationBfu" is used with an explicit
formula which only includes local values of the functioh
Let us now consider the steady state equation analogous to (14), i.e.,

3%u  9%u

a2 + 92 = Fe(x,2), u(x,-1)=0, uix,1)=1, ze(-1,1), xe (0,2r). (15)
We now need to use an implicit approach, with respebbtihspace variables. We look for
the x-periodic functionu(z, x) as a discrete Fourier expansion:

U(X, 2) = Zk=—N,/2,Ng/2—1 Uk (2) gkx. (16)

We compute the Fourier mod@sk(z) of the F.(z, x) function. Then the functiongy(z)
can be found from the system bl independenordinary differential equations:

0% on A —Nx Ny
@uk(Z) — k(2 = F(2), k= 55 T 1 (17)

These equations are solved with the same one-dimensional domain decomposition m
in z-direction as described above (Eq. (13) widh= —k2| + D2). We then have a fine grid
level of parallelism with respect to the wave numkeWWe have implemented these tech-
nigues to solve the problem (1)—(4) with periodic boundary conditions. Using honblock
communications we obtained an efficiency of about 90% with-2, Ny =128 N, =59
on the paragon with 32 nodes. We refer to [6] for a detailed description of the results.
second choice is to use a similar parallel scheme to compute the time dependent prc
(14) as well; but we observe that the complexity of the algorithm with respégtb@comes
guadratic when using a matrix product approach. In addition the algorithm requires a gl
transposition of the data that might affect the efficiency of the parallel algorithm.

3. DECOMPOSITION IN FUNCTION SPACE FOR THE NONPERIODIC
BOUNDARY CONDITIONS

The next step to obtain a more realistic model, is to include the nonperiodic bounc
conditions (BC), because the walls of the test tubes may significantly influence the dyna
of the combustion front [16]. We consider homogeneous Neuman boundary condition:
the concentration and possible heat transfer for the temperature at the walls. Egs. (
(2) can be solved with the same method as above, except that the finite differences
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respect tax must be modified to implement the new boundary conditions. However, «
solution of the stream function equation uses the Fourier expansion idhrection and
this cannot be applied to the case of the nonperiodic boundary conditions. Itis quite pos
to substitute into the Fourier approximation a Chebyshev approximatignasfdw in the
x-direction as well, but this will result in a large change of the data structure of the code
will give rise to difficulties in terms of parallelism efficiency. Our objective is to build a
efficient parallel numerical scheme that works with periodic, as well as nonperiodic (E
problemswith the same data structure To achieve this goal we develop a technique, th:
is an extension of the work of Israei al. [13]. Let us consider the unsteady incompressibl
Navier—Stokes equation, onthe dom&ig- |0, 27 [ x ]—L, +L[, writtenin stream function
formulation with a no-slip boundary condition along the vertical waks0, z € (—L, L),
andx=2x,ze (—L, L):

AV /ot = (0W/3IX)(0AW/0Z) — (0W/0Z) (AW /IX)
+AAY — f(X,z,t), (X,2)eQ,

v(0,2) =0, (0¥/0x)(0,2)=0, ze(-L,L),
V(2r,z) =0, (0V/oX)(27r,2) =0, ze(—L,L).

(18)

We are going to use a special feature of our model problem (1)—(4) on the infinite <
(0, 27) x (—o00, 00); the gradient of the temperature vanishes exponentially far from t
combustion front for large. Thereforef (x, z,t) = RP(3T /dx) is vanishing exponentially
and consequently and its derivatives are vanishing exponentially for largeo. We can
look atW as a smooth periodic function in tzedirection of period 2. Therefore, a Fourier
expansion ofl in the z-direction does not exhibit a Gibbs phenomena. We will in practic
take L large enough in our numerical simulation such that it has no influence on the comg
combustion front.

Let us consider the following semi-implicit Euler scheme for iterating in time:

AU dtAAWML = dt((@W"/9X)(AW"/3Z) — (0W"/3Z)(dAW"/DX)
+ AW —dt f(X,zt)), (X,2)eQ,

v"tl0,2) =0, (B¥"1/9x)(0,2) =0, ze(—L,L),
v, 2) =0, @¥™l/ax)(2r,2) =0, ze(-L,L).

(19)

We use a spectral method in Fourier space inztldérection; f and W at timet,, are ap-
proximated by the following discrete Fourier expansion:

f(X, Z,th) = Zk=—n,/2,Ne/2-1 fAE(X) v, (20)

WX, Z, th) = Ske_ny 2.8y 2 1P (x) €YY, (21)
(z+ L)m

y = — (22)

Let us denote b¥"(x, z) the right-hand side of Eq. (19). From the approximation

@W"/aX)(AAW"/dy) — (3W"/3y)(dAW"IX)
A 1 SN2 N2 [ € Sk (U ko (Pl — kW ) — Bl ke (B — K3W )], (23)
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we obtain the discrete Fourier expansiorFdf We have then to solve at each time step th
uncoupled fourth-ordeN, ODE's:

e fork=0
(Bg)" — dt(¥g™)" = Fo, xe(0,2m), (24)
Pr0) = (U§™) (0) = ¥§2n) = (¥§) 2r) = 0. (25)

e fork #£0:
()" — k2Pt — dt((Ph) " — 22 (Y KT = By, x€(0,27), (26)
WO = (W) ©0) = bten = () @) = (27)

Let us formally denote these fourth-orderear ODE equations

L[¥0H] = B, xe(0,2n). (28)

The mainidea is talsocomputeﬂlf’”rl with Fourier expansion. We will omit the subscript
k andn + 1 to simplify the notations in what follows. Using the superposition principle, tt
solutionW is written

U= "I\/F + ‘ifc, (29)

whereWr andU¢ are defined in the next sections.

3.1. The Particular SolutionVr with Fourier

Letd >0,d eR, and let [Q 27 + d] be an extension of the domaif, 2r). Then if F
is in C"(0, 2rr) there exists in C"(0, 27 +d) that is anx-periodic extension of. We
constructF as follows. We consider the exact or computed values of the derivatiies o
until ordernth atx =0 andx = 2. The classical Hermite interpolation allows us to defin
a polynomial functionPg on [2r, 27 + d] of degree 2 + 1 that interpolates the function
F with the conditions:

PO = F%n), PPen=F@n,.... PPen=F"@n), o)
POCr +d) = F?©0, PPer+d)=FY0),.... PP@r+d)=F"0.
Then thex-periodic functionF of period 2r +d is given as
— F(X) Vxe [0, 27],
F(x) = (31)
Pe(X) Vxe[2m, 2 +d].

We then definalr as the solution of the problem:

L Wel =F, xe(,2r +d),
g 27 + d periodic (32)
Ur e C™(R).
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3.2. Corrector Term:¥¢

We observe that (28) is a singular perturbation problems dtith O(1) as a singular
perturbation parameter, an is a regular expansion of the solution [2]. The next ste
consists in searching for a correctdg so that may satisfy Eq. (28) on the domain
with the correct boundary conditions, i.e.,

L[¥c] =0, xe(0,27),
Ue(0) = Ve (0), (V) (0) = —(¥r)(0) (33)
Uc(2n) = —Ve(2n), (W) (27) = — (V) (21).

Since the operator,, are fourth-order linear operators with constant coefficients, o
can once and for all compute the basis for the fourth-dimensional vector space of
solutions; so we have

o fork=0:
B2 = ape ¥V 4 gre (@T0NAD s 5027 — X):; (34)

o fork=£0:
PK = o e kX 4 g ek @m0 4 o (VIerWdnx) 4 g o= (VierWdner—) - (35)

The derivatives oﬁlé can be computed readily from the previous formulae. The derivativ
of \i/'; can be computed from its discrete Fourier expansion. We assemble the right-|
side of Eq. (19) at each time step using the splitting (29) on the derivatives as well.

3.3. Results and Algorithm

Our technique differs essentially from the work of Israatial. [13], by the way we
extend the right-hand side (RHS) of our ODEs problems; they use a so-called bell func
that cuts off the RHS into zero outside, 27 ). We find improved accuracy using Hermite
interpolation even if the derivatives & are computed numerically via decentered finit
differences. In practice, we use Hermite interpolation up to second-order derivative:
addition the work of Israelet al. is focused on the Helmholtz problem, but there ar
several new difficulties to properly implement the method when a nonlinear time-depen
problem is solved. We refer to [4] for a detailed study of this method applied to a large
of classical problems.

We have tested the stability and accuracy of our numerical scheme to solve the biharn
problem on©2 =]0, L[ x ]—L, +L[ as the steady limit of the problem:

AV /ot = AAV — f(X, 2 1), (X,2) € Q,
w(0,2) =0, (3¥/9x)(0,2)=0, ze(—L,L), (36)
W(ly,2) =0, (0V/3x)(Ly,2)=0, ze(—L,L).

We have determined the source tefrin order to have an exact solution that satisfies tr
equation, as well as the boundary conditions. The dimension of the donhgirHsr in the
x-direction and 2. = 27 in thez-direction. The numbeXy, /2 denotes the number of modes
in x-direction used on the extended domain. We have imp@edontinuity conditions
to build the Hermite interpolation polynomial (i.en=2 in (30)). The numerical values
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TABLE |
Error in Maximum Norm between the Exact Solution
7~5(x — m)?x% and the Computed Solution with Respect to the
Number of Modes N,/2 and the Ratio between the Extended
Domain and the Original Domain

Solution:z ~3(x — 7)?x3

S bed =2 bed —1.1429 bed —1.0667
8 0.205213E-02 0.950714E02 0.7219398-01
16 0.817644E.04 0.984945E 04 0.142515E02
32 0.188141E05 0.255054E05 0.158448E-04
64 0.344994E07 0.932849E07 0.233131E06
128 0.421207E09 0.198517E08 0.829286E 08

of the derivatives involved in the Hermite conditions (30) are computed with one-sic
second-order finite differences, based on grid points inside the physical domain. It is
wise to use central finite differences because the Gibbs phenomenon might be amplifie
the interpolation process after each time step.

Tables | and Il give the maximum norm of the error between the computed solution
the exact solution with respect to the number of madg& for two test cases. In addition,
we test the influence of the ratid« + d)/Lx between the sizé, +d of the extended
domain and the size, of the physical domain on the accuracy.

The exact solutions, defined on 0] x [—, 7], are not periodic in th&-direction and
are chosen such that their maximum value is equal to 1. Table | corresponds to a grac
varying polynomial test function, but in Table Il we consider a more rapidly varying te
function. The time step is a matter of choice since we only test the steady limit, but it
obviously some influence on the stability and accuracy of the scheme. This is discu
below, and Tables | and Il have been obtained with=10-2.

We note that the speed of convergence of the method is at least of order 4 for Tak
results and of order 5 for Table | results. In fact when one considers only the results

TABLE Il
Error in Maximum Norm between the Exact Solution
75(x — )2x3e%"@-1) and the Computed Solution with Re-
spect to the Number of Moded\,/2 and the Ratio between the
Extended Domain and the Original Domain

Solution:z =5(x — 7)?x3e¥En@-D

lez

Lxtd =2 Lxtd — 11429 Lxtd — 10667
X X X

8 0.112976E01

0.868233E-00

0.123936E-01

16 0.672073E03 0.210331E01 0.804409E-00
32 0.326011E04 0.757420E03 0.566257E-02
64 0.168978E05 0.437461E04 0.176142E04
128 0.947167E07 0.229509E05 0.632574E06
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the larger values of Nin Tables | and Il the results seem to get closer to order 6. Tt
felicitous convergence is in agreement with the fact that for each mtderight-hand side
of the fourth-order equation satisfied ks is extended as €2(0, 27 + d) function: w§
is, therefore, irC8(0, 27 + d). However, since the extension of the right-hand side is bu
numerically, it is not obvious at all. In addition, we observe that the size of the exten
domain has less and less influence on the accuracy of the solution when the numt
Fourier modes is large enough. This observation is in agreement with the 1D theory o
method [4].

We must emphasize that the discrete Fourier expansion of the corrector

WA(X, 2) = Tkeeny 2, Nx/271®8,k(x) év, y= w

exhibits at leading order, more precisely foe (—1/+/dt, 1/4/dt), a boundary layer of
O(/dt) thickness. We have observed some spurious oscillations related to the Gibbs
nomenon, when the time step is so small that the physical space step does not allow a
representation of the layer. For the gradually varying test function of Table I, for exam
At =5x 10~* seems to be the smallest time step that allows numerical convergence
32 Fourier modes. A smaller time step leads to blowup. The obvious thing to do to overc
this difficulty should be to use optimal filters, but this was not required for our numeri
simulation in the combustion described below.

The parallelimplementation of our new solver consists in distributing the mode equat
between the processors. So each processor has to solve a set of equations for several
and then gathers the modes to build that part of the solution belonging to its computati
domain. The algorithm corresponding to our new parallel solver for the Navier—Sto
equations can be summarized for each time step as follows:

Step 1. Computé, .

Step 2. ExtendFy .

Step 3. Compute the explicit formula fag, Bk, v, k-

Step 4. Computdr i via a matrix product approach.

Step 5. Add the correctoifc,k to the periodic solution where it is not negligible.

We observe that the efficiency of the parallel implementation depends crucially on the
step because of the coupling of the different modes. Since Step 1 is a piece of the compu
of Egs. (1), (2), and (18), independentfcommunications can be conveniently overlappe
by computation. On the contrary, Steps 2 to 5 of the algorithm are fully parallel.

We have been able to obtain good efficiency (90%) from this method on a four-proce
alpha server, just by unrolling the loop on the modes. Experiments with MPI and lat
numbers of processors are currently in progress. However, it is not critical for our appl
tions because a Dec alpha server with four 400-Mhz processors is at least 50% as fac
32-node paragon [7].

We note that in order to calculate the right-hand sfdg, z, t) of Eq. (19) on the grid
(x-uniform, z-Chebyshev), the teriT /dx must be interpolated in thedirection from the
(x-uniform,z-Chebyshev) grid to thextuniform, z-uniform) grid. The computed solution
must be interpolated back. Each of these distributed interpolations are performed
collocating the unknown function on the spectral grid points and evaluating its polynor
representation on the other grid points. The time spent in each of these two interpola
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is respectively 3% and 3.6% of the total time per iteration on four processors for the fro
polymerisation problem described below.

Remark. The matrix multiply approach for the number of Fourier modes that we cc
sider is very effective on our Dec alpha computer; however, one should consider par
FFT solvers for larger problems.

4. ARESULT ON FRONTAL POLYMERISATION

A systematic investigation of the nonperiodic boundary condition effects on convec
and thermal instabilities of the combustion model under consideration is beyond the s
of this paper, so we have selected here a numerical simulation that illustrates the nums
effectiveness of our method.

Specifically, we show the effect of convection on the thermal instability that can also e
without convection, that is wheR = 0. This computation was done in the following way:

We start with the values of parameters, where the thermal instability occurs, Zeldo
numberZ = 7.8 and a domain of a width/ The time-periodic pattern of the combustion
front can be described briefly as follows: the solution stays symmetrical in space arc
the medium linex =2 at all time; a hot spot attached to the front and located on the a
of symmetry of the solution, successively splits into two hot spots that propagate rap
against the walls and then form again when the two hot spots come back simultanec
from the walls and merge. This type of instability is well known in solid combustion; it w.
observed in SHS experiments and analyzed with asymptotic methods [21, 20, 19].

Starting from this initial solution, we introduce the effect of convection in this nume!
cal simulation by gradually increasing the Rayleigh number from® positive Rayleigh
numbers correspond to ascending fronts. The exothermic reaction front heats the
reactant from below and we can expect the appearance of convection rolls. For this col
tation, we usend = 2 subdomains with 59 Chebyshev collocation points inztaérection,
80 modes in thex-direction, an extension domain ratio of 1.2850 for the stream-functi
solution and 128 finite differences pointsxrdirection for the other unknowns.

Figure 1 represents thelocation of the hot spot with respect to time for the FP with an
without hydrodynamics (respectiveR=5 andR = 0). Because the solution is symmetric
with respect tox = 7z, we can omit the representation of the solutionRee O (respectively
R=1>5) in the lower half (respectively the upper half) of the domain of computation.

The period in time of the FP process wikh=5 (resp.R=0) is measured to be 3.99
(resp. 3.66) time units; the maximum value for all times of the hot spot is 1.285 (re
1.1635). The convective effects have slowed down the FP process.

The mechanism of propagation of the hot spot deals with the interaction of reaction
diffusion processes. When the hot spot on the central line decreases and the two hot
along the wall increase there is a specific time when the location of the maximum valu
the temperature jumps from the central line to the location near the walls; it correspont
a vertical line in Fig. 1.

In order to measure the different phases in the FP process and analyze the effe
convection we can define the following events:

e A:the hot spot leaves the center of the domain
e B: the hot spot reaches the walls
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FIG. 1. Comparison of the motion of the hot spot along tklirection in time with hydrodynamics
(“.-.,” R=5, lower half part of the domain) and without hydrodynamics (“R =0, upper half part of the
domain).

e C:the hot spot reaches its maximum value in time during the time period when it s
close to the wall

o D: the hot spot leaves the walls

e E: the hot spot reaches the center of the domain

o F: the hot spot reaches its maximum value in time for all time.

It clearly appears that the convection:

1. slows down the FP propagation

2. breaks the symmetry of the time period since the hot spot stays longer along the ce
line than along the wall. This is not the case whsa: 0.

3. increases the maximum value of the hot spot.

4. slows down the diffusion of the hot spot strongly in the direction from the center
the wall and weakly in the direction from the wall to the center.

5. speeds up the motion of the two hot spots in the direction from the wall to the ce
and from the center to the wall.

This can be understood somehow by looking at the interaction between the spatial s
ture of the temperature field and the corresponding hydrodynamic structuresRehén
—see Figs. 2 and 3. The dashed lines represent the stream-function isovalues, whi
solid lines represent the temperature isovalues. We superpose the two fields on the



328 GARBEY AND TROMEUR-DERVOUT

Z=7.8, R=5, dT=0.01, T=16.2 Z=7.8, R=5, dT=0.01, T=16.4

F-A
. 0 .
o -30  -28 -46 -30
T
12 12}k
N Y
AEURY
10 10F ST gem M
025\ |
\ LY
x L]
o
8r 8F !
’
33 = ] N 6
929" R AN
o NI \ V)
{ 1 AR kL 1
4 i \-042 ) 1 4 '
1 o )t 1
\ o 1y
A o
2F L 2
05- <L 00,0
- ~Xoa7s A-B B-C
-46 -44 42 40 -38 -3 -34 -3 -30 T 46 -44 42 -40 -38 36 34 -32 -30
2=7.8, R=5, dT=0.01, T=17 Z=7.8, R=5, dT=0.01, T=17.52
— T . .

1.02

1 ! w
h N
10k 1 1of f \to.bsm
- :
—0/‘15 TN NV
bosts |
sk 4 8t . s
s,
pg ~--" _~-

’ RENERN
/
|~ ~,-00833,
Voo
! }-0,[0521
L,/ ;00286

FIG. 2. Evolution with time of the isovalues of the temperature (solid line) and the isolvalues of the stre
function (dash line). Reference to the time event of Fig. 1 is given in the bottom right hand corner.

pictures in order to better show the coupling between the convection and gradier
temperatures (Boussinesq approximation (3)). The symmetry of the stream functic
satisfied to the fourth digit.

During the phase E-F, the flow structure, generated by the hot spot, transports ¢
heat to the fresh reactant. This preheat increases the combustion process, leading to
in the value of the hot spot at the center of the combustion frort (8.36, 18.44, and
18.56). When this hot spof (= 18.56) reaches the maximum value (1.285), it diffuses i
thex-direction (T =19.0, 19.6, and 16.2, phase F—A) and creates new flow structures v
an opposite spin as the previous ones. Then the two oldest flow structures die, due t
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FIG. 3. Evolution (continued) with time of the isovalues of the temperature (solid line) and the isolvalue:
the stream function (dash line). Reference to the time event of Fig. 1 is given in the bottom right hand corne

opposite spin of the vortices attached to the hot spots. In the sequel, the hot spot split:
two hot spots which join the walls[(= 16.4 andT = 16.56, phases A-B).

A new flow structure is then establishetl £ 16.56 andT = 16.72, phase B—C). The
fluid motion transports some heat to the fresh reactant located at the center of the do
that contributes to increase the hot spot values. The hot spots attached to the front pror
along the wall. When the hot spots reach a maximum value of I.2% {6.72, phase C-D),
they diffuse toward the center of the frofit £17.0, 17.52, 18.28, phase D—E) and merge
(T =18.36), creating two new vortices with an opposite spin to the previously establisl
flow structure of phase B-C.
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TABLE I
Elapsed Time between the Events A and B, B and C, etc.
of the FP with and without Hydrodynamics

Time A-B B-C C-D D-E E-F F-A Period

R=0 0.04 0.34 1.45 0.04 0.34 1.45 3.66
R=5 0.16 0.18 154 0.08 0.18 1.85 3.99

Note Rayleigh number R-5 and R=0, respectively.

5. CONCLUSION

We have presented a new algorithm that allows us to generalize our previous resu
the modelization of frontal polymerization with the classical simplification of periodici
to nonperiodic boundary conditions.

Our technique relies on combining complementary levels of decomposition accorc
to the asymptotic properties of the combustion model and the specific structure of
traveling waves under consideration. These techniques are developed to make an eff
use of MIMD architecture using among other concepts, a parallelism based on the Fo
modes decomposition.

We have numerically shown for some test functions that this technique can be of o
4 at least and that the length of the domain extension has little influence on the solt
accuracy for large numbers of modes.

We have given a nontrivial illustration of this method with a numerical simulation th
couples convection motion of the fluid and the well-known thermal instability of a comb
tion front.

We are currently investigating the possibilities of generalizing of this embedding te
nigue to solve free boundary problems that occur in liquid—solid frontal polymerisation |
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